119th CONGRESS 1st Session

S.	

To amend the Federal Water Pollution Control Act to reauthorize the pilot program for alternative water source projects, and for other purposes.

IN THE SENATE OF THE UNITED STATES

Mr. GALLEGO (for himself and Mr. CURTIS) introduced the following bill; which was read twice and referred to the Committee on

A BILL

- To amend the Federal Water Pollution Control Act to reauthorize the pilot program for alternative water source projects, and for other purposes.
 - 1 Be it enacted by the Senate and House of Representa-
 - 2 tives of the United States of America in Congress assembled,

3 SECTION 1. SHORT TITLE.

4 This Act may be cited as the "Water Infrastructure

5 Modernization Act of 2025".

6 SEC. 2. INTELLIGENT WATER INFRASTRUCTURE TECH7 NOLOGY.

- 8 Section 220 of the Federal Water Pollution Control
- 9 Act (33 U.S.C. 1300) is amended—

1	(1) in subsection (b), by adding at the end the
2	following:
3	"(3) INTELLIGENT WATER INFRASTRUCTURE
4	TECHNOLOGY.—The term 'intelligent water infra-
5	structure technology' means—
6	"(A) intelligent wastewater treatment and
7	collection systems and stormwater management
8	operations, including technologies that rely
9	on—
10	"(i) the use of real-time monitoring,
11	management, analytics, and data collection
12	tools, embedded intelligence, and predictive
13	maintenance capabilities that improve the
14	energy efficiency, cost efficiency, reliability,
15	and resiliency of wastewater treatment and
16	collection systems;
17	"(ii) real-time remote sensors that
18	provide continuous monitoring of water
19	quality to support optimization; and
20	"(iii) the use of artificial intelligence
21	and other intelligent optimization tools
22	that—
23	"(I) reduce operational costs, in-
24	cluding operational costs relating to

MAZ25534 8NS

S.L.C.

1	energy consumption and chemical
2	treatment; and
3	"(II) improve decisionmaking;
4	"(B) innovative and alternative combined
5	sewer and stormwater control projects, includ-
6	ing groundwater banking, that rely on real-time
7	data acquisition to support predictive aquifer
8	recharge through water reuse and stormwater
9	management capabilities;
10	"(C) advanced digital design and construc-
11	tion management tools, including advanced dig-
12	ital technologies;
13	"(D) technology that can identify or re-
14	duce water losses in a nondestructive or non-
15	disruptive manner, including through analytical
16	software, flow and pressure monitoring, or
17	acoustic data collection;
18	"(E) predictive and diagnostic tools for in-
19	formed decisionmaking;
20	"(F) technology that can provide com-
21	prehensive data on pipe integrity to identify the
22	presence of leaks or gas pockets;
23	"(G) technology that can provide informa-
24	tion on the extent of leaks or gas pockets, with
25	an emphasis on detecting weakness of, vulner-

1	ability of, or damage to pipe barrels, pipe
2	joints, or other pipe features;
3	"(H) real-time remote sensing tech-
4	nologies, including the use of advanced data
5	management and analytics, that detect and
6	alert owners and operators to wastewater and
7	water supply treatment facilities operations, in-
8	cluding leakages, and pipe bursts on a real-time
9	basis, including persistent sensor networks ca-
10	pable of measuring—
11	"(i) acoustic signals;
12	"(ii) pressure transient;
13	"(iii) water quality; or
14	"(iv) water flow;
15	"(I) advanced metering infrastructure, in-
16	cluding meter data analytics and ratepayer
17	technology-
18	"(i) to improve end-user conservation;
19	and
20	"(ii) in support of disadvantaged com-
21	munities;
22	"(J) resilient water supply projects that
23	may provide real-time monitoring of weather
24	patterns and weather-related impacts on water

1	quality and flood protection reservoirs and
2	dams that enhance operations, including—
3	"(i) improved water supply reliability
4	and management;
5	"(ii) protection of natural resources,
6	including fisheries; and
7	"(iii) temperature control;
8	"(K) innovative and alternative water sup-
9	ply projects, including groundwater banking,
10	that rely on real-time data acquisition to sup-
11	port predictive aquifer recharge through water
12	reuse and stormwater management capabilities;
13	"(L) artificial intelligence and other intel-
14	ligent optimization tools that—
15	"(i) reduce operational costs, includ-
16	ing costs relating to energy consumption
17	and chemical treatment of wastewater and
18	stormwater; and
19	"(ii) improve decisionmaking; and
20	"(M) advanced digital design and construc-
21	tion management technologies and tools relating
22	to water treatment systems and distribution
23	networks the development of advanced digital
24	models.";

1	(2) by striking subsection (f) and inserting the
2	following:
3	"(f) USES OF GRANTS.—
4	"(1) IN GENERAL.—Amounts from grants re-
5	ceived under this section may be used for engineer-
6	ing, design, construction, and final testing of alter-
7	native water source projects designed to meet critical
8	water supply needs.
9	"(2) Prohibition.—Amounts from grants re-
10	ceived under this section may not be used for plan-
11	ning, feasibility studies, operation, or maintenance.
12	"(3) INTELLIGENT WATER INFRASTRUCTURE
13	TECHNOLOGIES.—
14	"(A) IN GENERAL.—Amounts from grants
15	received under this section may be used for en-
16	gineering, design, construction, implementation,
17	training, and operations relating to the adop-
18	tion and use of intelligent water infrastructure
19	technology.
20	"(B) Applicability.—For purposes of
21	paragraph (2), any costs with respect to intel-
22	ligent water infrastructure technology shall not
23	be considered operation or maintenance costs.";
24	(3) by striking subsection (h) and inserting the
25	following:

1	"(h) REPORTS.—
2	"(1) IN GENERAL.—Not later than 180 days
3	after the date of enactment of the Water Infrastruc-
4	ture Modernization Act of 2025, and not less fre-
5	quently than annually thereafter, the Administrator
6	shall submit to Congress a report that—
7	"(A) describes—
8	"(i) the projects awarded grants for
9	the purposes described in subsection $(f)(3)$;
10	and
11	"(ii) the improvements in the resil-
12	iency that resulted from grants awarded
13	under this section; and
14	"(B) includes any recommendations of the
15	Administrator to improve the ability of grants
16	under this section to achieve the uses described
17	in subsection (f).
18	"(2) INITIAL REPORT.—In the initial report re-
19	quired under paragraph (1), the Administrator shall
20	include a description of the implementation of this
21	section, including a description of—
22	"(A) the projects for which a grant was
23	sought under this section for the purposes de-
24	scribed in subsection $(f)(3)$ that were denied;
25	and

1	"(B) for each of the projects described in
2	subparagraph (A), the reasons for which the
3	grant was denied."; and
4	(4) in subsection (i)(1)—
5	(A) by striking "\$25,000,000" and insert-
6	ing ''\$50,000,000''; and
7	(B) by striking "2026" and inserting
8	<i>"</i> 2028 <i>"</i> .